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A commentary on modelling osteoarthritis pain in small animals
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Objective: To describe the currently used animal models for the study of osteoarthritis (OA) pain, with an
emphasis on small animals (predominantly mice and rats).
Outline: Narrative review summarizing the opportunities and limitations of the most commonly used
small animal models for the study of pain and pain pathways associated with OA, and discussing
currently used methods for pain assessment. Involvement of neural degeneration in OA is briefly dis-
cussed. A list of considerations when studying pain-related behaviours and pathways in animal models
of OA is proposed.
Conclusions: Animal models offer great potential to unravel the complex pathophysiology of OA pain, its
molecular and temporal regulation. They constitute a critical pathway for developing and testing disease-
specific symptom-modifying therapeutic interventions. However, a number of issues remain to be
resolved in order to standardize pre-clinical OA pain research and to optimize translation to clinical trials
and patient therapies.

� 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Pain and disability are the primary symptoms for patients who
suffer from osteoarthritis (OA), representing one of the major
health burdens in the industrialized world (reviewed in1). Current
symptom management approaches (non-steroidal anti-inflamma-
tory drugs (NSAIDs), viscosupplementation, opiates, corticoste-
roids) are largely inadequate, because of their limited efficacy,
particularly for severe OA pain, and the plethora of safety issues
with prolonged treatment. Ultimately, uncontrolled pain is the
primary motive for total joint replacement (TJR)2 and even after TJR
a significant portion of subjects report persistent pain of unknown
origin3. Effect sizes of NSAIDs, the most commonly used painkillers
in OA, are small to moderate and often close to those of placebo4,5.
Serious side effects associated with chronic use of NSAIDs have
been extensively documented6. Recently, blockade of Nerve
Growth Factor (NGF) was reported to be strongly analgesic in knee
OA7 but an unexpected side effect was encountered in seemingly
accelerated OA, especially in patients whowere taking concomitant
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NSAID therapy8. These issues underscore the significant gaps in our
current understanding of OA pain: firstly, the molecular pathways
that generate and maintain the pain but also the relationship be-
tween joint pathology and pain and whether this changes with
disease stage, progression or initiating cause (“trigger”).

Currently used animal models for the study of OA-associated
pain

Filling in these considerable shortcomings in our knowledge
will require that clinical research in OA patients is complemented
by studies in disease-specific animal models of OA. Clinical studies
provide important data on association between clinical symptoms
(i.e., pain) and particular tissue pathologies, genetic differences
(e.g., SNPs), psychosocial determinants, etc., and these can be
described “risk factors”. Ascribing a causal relationship between a
specific molecular, cellular or pathological event and OA pain, re-
quires therapeutic or prophylactic modification of that factor with a
measurable change in the onset, severity or progression of the pain.
In the absence of such interventions for patients with OA, defining
the key changes that cause OA pain needs to be investigated in pre-
clinical models where such factors can be prophylactically or
therapeutically targeted (e.g., specific genetic mutations).
ublished by Elsevier Ltd. All rights reserved.
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The number of research papers specifically aiming to evaluate
pain and pain mechanisms in animal models of OA is surprisingly
small, relative to the extent of the medical problem it represents. A
Pubmed search conducted onMarch 312013 using the search terms
“osteoarthritis pain” yielded 13,391 results whereas adding the
keyword “animal models” revealed just 240 papers, only 113 of
which were original reports on pain in OA animal models. On the
contrary, a search for “animalsmodels ofOA” resulted in1737papers
(3/25/2013), describing a plethora ofmodels, including spontaneous
and induced disease (using at least 20 induction methods) in var-
iably aged male and female animals of some 10 different species
(reviewed in9e11). Themajority of these studies aimed to investigate
the pathophysiological mechanisms of OA joint pathology and/or
test potential disease-modifying therapies. It remains unclear
whether any one of the array of models and or species is superior
and more predictive of translation to humans, both with regard to
disease mechanisms and therapeutic targets. Nevertheless, our
understanding of the cellular andmolecular pathways that regulate
the initiation and progression of structural joint damage in OA has
advanced enormously as a result of findings from animal models.

The number of OA models/induction methods used to study
pain, and the animals (species, age, gender) in which they have
Table I
Animal models of OA and changes in nociception/pain reported

Model Species

MIA Rat (knee)

Mouse (knee)

Guinea Pig (knee)

Surgical models
(Instability inducing)

Rat ACLT

Rat MMT

Mouse DMM

Mouse partial medial MNX

Rabbit Partial MNX

Dog ACLT

Dog Groove model

Sheep MNX, DMM

Horse osteochondral fragment plus exercise (carpus)

Obesity-associated OA Mouse

Other Rat Collagenase-induced arthritis

Mouse Collagenase-induced arthritis

References in this table represent a selection from the 113 papers revealed by the Pub
appeared after the search date. Abbreviations used: ACLT ¼ anterior cruciate ligament
MNX ¼ meniscectomy.
been examined is much more restricted than for studies of struc-
tural pathology12. The animal models used to study OA pain and the
techniques to assess pain in the papers retrieved from the PubMed
search, are listed in Table I. The opportunities and limitations
associated with the most commonly used models are discussed, in
addition to well-established and emerging techniques for evalu-
ating pain. We will briefly discuss evidence of neuronal degenera-
tion in pre-clinical models, while specific mechanisms of pain
uncovered in animal models are reviewed in detail elsewhere in
this special issue13. We have focused this discussion largely on
studies in small animals (mouse, rat, guinea pig) as these represent
the most commonly used species for OA pain investigation, as is
becoming the case in all pre-clinical medical research (under-
standing animal research http://understandinganimalresearch.org.
uk/). There is no evidence to suggest that pain outcomes in small
animals better replicate human disease than other species used
(e.g., dog, sheep, horse), and these larger animalsmay providemore
anatomically and biomechanically useful models of humans,
particularly for evaluation of potential non-pharmacological
symptom-modifying OA therapies (e.g., surgery, physical therapy).
In dogs and horses in particular, pain and disability associated with
OA is a significant clinical problem, and thus findings in these
Changes in nociception/pain outcomes reported

- Mechanical hypersensitivity (progressive) in hindpaw14

- Weight-bearing deficit14

- Altered gait15

- Diminished hindlimb grip force16

- Cooling hypersensitivity17

- Vocalization in response to knee bend15

- Conditioned place preference18

- Locomotive changes, including rearing (assessed by photocell)19

- Depressed wheel-running20

- Altered sleep patterns21

- Diminished locomotion during forced exercising22

- Mechanical hypersensitivity23

- Altered weight-bearing24

- Mechanical allodynia24

- Gait changes25

- Weight-bearing deficits26

- Mechanical allodynia26

- Weight-bearing asymmetry27

- Mechanical allodynia27

- Mechanical allodynia (von Frey) early on, maintained for 16 weeks;
absence of thermal allodynia up to 8 weeks post DMM28

- Late-onset altered behaviour on Laboras platform (reversible with
indomethacin)29,30

- Late-onset weight-bearing deficit30;

- Vocalization upon knee compression31

- No weight-bearing deficit31

- Secondary mechanical allodynia and hypersensitivity31

- Cold hypersensitivity31

Changes in weight-bearing32

Altered gait and locomotion33

Altered gait34

Altered gait35

Altered gait; reduced mechanical nociceptive threshold (joint flexion)36

Changes in locomotion37

Mechanical allodynia/hypersensitivity37

Anxiety-like behaviours37

Mechanical and thermal allodynia38

Changes in weight distribution39

med search in addition to hand-selected papers that were missed in the search or
transection; DMM ¼ destabilisation of the medial; MMT ¼ medial meniscal tear;
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species could have a direct therapeutic and economic veterinary
impact in addition to translation to human disease.

Pain assessment in OA models

Evaluating joint pain in animal models of OA is fraught with
many practical complications requiring an observant and patient
experimenter. The subjectivity in interpreting some of the pain
behavioural responses reflects the need for blinded experiments
whenever possible. A number of pain behaviour assessment tech-
niques have recently been borrowed from the pain field at large and
applied to OA pain measurement. All of these behaviour measures
have their own advantages and limitations. As such, multiple
different tests should be carried out in order to provide a global
measure of OA pain.

Electrophysiology
A powerful but technically demanding method of quantifying

joint nociception involves recording from neurones in the pain
pathway. When peripheral nerves become sensitized through local
release of algogenic agents in OA joints, the frequency of firing of
these nociceptors is dramatically increased. This in turn causes
plasticity changes in second-order neurones in the dorsal horn of
the spinal cord leading to central sensitization. By recording from
these pain-transmitting neurones it is possible to build an elegant
picture of the changing neurophysiological properties of the ner-
vous system during OA.

Early experiments in which single unit recordings were made
from joint primary afferent neurones showed that C and Ad fibres
possess mechanogated ion channels40. That is to say, these sensory
nerves express ion channels that only open in response to me-
chanical movement of the joint leading to the generation of neural
impulses and the production of mechanosensation. The first re-
cordings from OA joint mechanoceptors were carried out in the rat
mono-iodoacetate (MIA) model, in which it was found that joint
mechanosensory nerves become sensitized in response to joint
degeneration41. While MIA itself does not sensitize peripheral
nerve endings, the resultant degeneration and concomitant pro-
duction of chemical mediators activate joint nociceptors in a
concentration-dependent manner42. Other studies have investi-
gated nociceptor activity in the Dunkin-Hartley guinea pig model of
spontaneous OA in which the sensory nerves are hyperactive, even
at rest43. Interestingly, it was discovered that the severity of joint
destruction in this model did not correlate with nociceptor firing
rate, highlighting a disconnect between disease and symptom. Part
of the reason for this uncoupling could be due to the decline in the
number of thinly myelinated neurones in OA joints43 or an alter-
ation in the sensitivity of OA joint nociceptors to algogenic
mediators44.

In addition to OA promoting peripheral sensitization, it has
recently been shown that second-order neurones in the dorsal horn
of the spinal cord also become hypersensitive following joint
destruction. Electrophysiological recording of neurones located in
laminae VeVI in the dorsal horn of MIA-injected rats revealed
enhanced responsiveness to mechanical stimulation of their pe-
ripheral receptive fields17. It should be noted, however, that
although the knee joint was rendered osteoarthritic, the test me-
chanical stimuli were applied to the hindpaw and not the joint.
Therefore, a direct link between joint afferent activity and central
sensitization has yet to be confirmed. Nevertheless, central sensi-
tization would amplify nociceptive signals arising from the pe-
riphery leading to enhanced pain perception in diseased joints.
Furthermore, these plasticity changes in the spinal cord couldmean
that joint pain may still be experienced in the absence of any pe-
ripheral input. Other studies have shown that microglia contribute
to central sensitization in OA joints and that inhibition of these
satellite cells could be a useful means of managing pain in diseased
joints45.

Evoked pain behaviour
The majority of pain behaviour tests used in the laboratory

employ some sort of evoked response to an external environmental
stimulus. These stimuli can be mechanical, thermal or chemical;
however, only mechanical stimulation bears any real relevance
to arthritic pain in a clinical sense. Evoked pain behaviour experi-
ments are typically carried out on rodents as these animals are easy
to handle and readily respond to sensory testing. Rats are the
species of choice as they are easier to handle and are less suscep-
tible to stress-induced analgesia compared to mice46. Mice are
significantly more active than rats and are therefore more prob-
lematic when it comes to these types of pain tests, which typically
require the animal to be in a state of rest. Animal restraint is
counterproductive here as the test subject will exhibit stress-
induced analgesia. The exploratory behaviour of rodents can be
tempered somewhat by habituating the animal to the test appa-
ratus over hours or days prior to measurement. Mice require more
habituation than rats and investigator patience is certainly key
here. Habituation to the test environment will also minimize the
incidence of startle responses in which the animal simply reacts to
a novel stimulus rather than a true pain behaviour. Repeat animal
handling is beneficial in rats as this makes the animals more
relaxed and amenable to sensory testing. Excessive handling of
mice, however, is not advised as these animals become increasingly
stressed with persistent human interaction. Finally, the test labo-
ratory should be quiet, warm and free of perfumes as any sort of
extraneous stimulus can cause stress or promote startle responses.
As mentioned previously, mechanically-evoked responses are most
germane for arthritis pain testing and shall be the main focus here.

von Frey hair algesiometry. Mechanical allodynia is commonly
measured by application of von Frey hairs to the dorsal, glabrous
surface of the hindpaw and determining a threshold for mecha-
nosensitivity. Since arthritis is usually induced in the knee and the
von Frey hairs are applied to the paw, this technique is really
measuring referred pain or secondary allodynia in these models.
The original hairs used by Maximillian von Frey in 1896 were taken
from various animals (e.g., squirrel, badger and swine), but nowa-
days calibrated nylon filaments are used. These monofilaments are
of various thicknesses and consequently bend with a discrete force
when pressed against the skin. During the training period, animals
are habituated to a Perspex container with a wire mesh floor and
the von Frey hair is repeatedly applied to the paw. This approach
reduces the likelihood of false positive responses that could be
attributed to startle effects. Three different approaches to deter-
mining mechanosensitivity have been developed. The first involves
choosing a mid-range von Frey hair and determining whether it
produces a true withdrawal response. If positive then a thinner
filament is chosen and again applied to the hindpaw. If the animal
does not respond to the filament, a thicker von Frey hair is chosen
instead. In this manner the mechanical threshold is ascertained.
The second method uses an up-down approach as originally
described by Dixon then subsequently refined by Chaplan and
colleagues47. In this regression analysis approach the mechanical
threshold is inferred from response vs non-response observations.
The final method uses three filaments with either low, medium or
high bending forces and the number of positive responses to 10
applications of each von Frey hair is recorded.

More recently, an automated von Frey hair algesiometer has
been developed which uses a motorized controller to apply a single
filament with increasing force. Amirror is used to align the filament



Fig. 1. Modification of the rodent incapacitance tester showing a rat in the correct
resting position. The advantage of the tube is that it encourages the animal to stand
with its weight directed onto the force plates.
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so that it will push against the metatarsal region of the hindpaw.
The animal should be stationary and not exploring prior to filament
application. A positive reaction to the mechanical stimulus involves
a rapid withdrawal possibly followed by licking of the paw.

Vocalization. Many mammals communicate their mood, condition
and identity by vocalizing. Each vocalization has a distinct signa-
ture based on acoustic frequency and duration, which encodes the
physiological and psychological well-being of the animal. While
audible squeaks in response to a noxious stimulus indicate a
nociceptive response, rodents can also emit ultrasonic chirps which
underlie a more affective component of pain48,49. These ultrasonic
calls have a frequency between 18 and 32 kHz, are between 300 and
4000 ms in duration and 65e85 dB in sound pressure50,51. Moni-
toring vocalization as a means of interpreting rodent pain is
complicated by the fact that ultrasonic chirps are also emitted
following copulation, submission, “tickling”, and the presence of a
predator. Thus, ultrasonic vocalizations are context-specific and are
open to a degree of subjective interpretation. Nevertheless, ultra-
sonic vocalization has been used as an affective pain readout and
can be ameliorated by opioid treatment48. Animal models of
arthritis have been found to emit audible calls as well as ultrasonic
chirps in response to noxious stimulation of the affected joint52,53.
As for other types of evoked pain behaviour, animals must be
habituated to the test environment so as to avoid any startle effects
or stress-induced vocalization.

Pressure application measurement (PAM) device. Evoked pain re-
sponses typically involve applying the noxious stimulus to the
hindpaw and since the majority of arthritis models centre around
the knee, these experiments are measuring secondary allodynia. To
circumvent this limitation of evoked pain techniques, a PAM device
can be used to apply the stimulus directly to the knee. The in-
strument consists of a calibrated force sensor which is worn on the
thumb of the experimenter. With the animal gently restrained, the
PAMdevice can be pressed against the joint of interest and the peak
force required to elicit a withdrawal response is indicative of
mechanosensitivity. Experiments using rodent models of joint
inflammation have found that the PAM device gives a robust
measure of knee joint pain with high inter-experimenter agree-
ment. So far, the PAM device has not been tested on rodent models
of OA.

Gait analysis
Patients living with OA often exhibit abnormal movement pat-

terns primarily due to altered joint kinematics. While some of these
gait changes in OA are due to deterioration in joint congruency,
compensatory movement to minimize joint loading and pain is also
likely to play a part. While monitoring animal movement following
arthritis induction could reveal some interesting insights into pain
perception, a couple of caveats need to be considered. Firstly, it is
difficult to interpret whether any observable gait changes are due
to OA pain or a consequence of altered joint biomechanics. Sec-
ondly, since rodents are prey animals they tend to disguise any gait
deficiencies because in the wild they would be a prime target for
predation. Arthritis-induced gait changes in higher order mammals
(e.g., dogs and cats) are more pronounced than in rodents making
these animals better suited for kinematic studies.

Two types of joint function have been used to assess pain in OA
animals viz. static weight-bearing and dynamic gait analysis. In the
former approach, hindlimb weight-bearing between an arthritic
and non-arthritic contralateral hindlimb are measured by an
incapacitance tester. This technique involves training an animal to
stand with each hindlimb resting on individual force plates. The
amount of body weight distributed between the two hindlimbs is
averaged over a 3e5 s period. Weight-bearing deficits have been
observed in various models of OA including the MIA model54e56,
and following joint instability57. The standard receptacle used to
restrain rodents for incapacitance measurement has the disad-
vantage that animals tend to lean on the sides of the box thereby
dissipating some of their body weight away from the force plates.
We and others have modified the system to take advantage of the
fact that rodents like to hide in drainpipes. The modified apparatus
uses a tube into which the rat will readily stand so that total body
weight is now directed towards the force plates (Fig. 1). While the
incapacitance tester has been found to produce consistent and
reproducible measurements in rats, its use in mice is less robust
due to the hyperactive and overly exploratory nature of this
species.

Several approaches are available to assess gait in a freelymoving
animal. The first simply involves dipping the paws of the animal in
India ink and then allowing it to run in a straight line across paper.
Rudimentary gait parameters such as stride length and paw area
can be easily quantified using this method. These principles have
been automated in the Catwalk apparatus wherein a high-speed
digital camera records the movement of a rodent as it traverses a
glass platform. Ferland et al. recently reported that the swing time
of MIA treated and unstable joints were significantly greater than
control animals and this effect could be reversed acutely with a
cyclooxygenase-2 inhibitor58. The Catwalk technique has been
modified to replace the glass platform with a transparent Perspex
treadmill belt. The use of a treadmill standardizes the speed at
which the animal walks and this forced movement approach has
been validated in rodent models of arthritis59,60.

Spontaneous pain behaviours
A tremendous amount of pain behaviour information can be

gleaned from simply observing OA animals over a period of time.
Animals in chronic pain tend to be withdrawn, hypo-locomotive,
exhibit shallow breathing and become hypotensive. These spon-
taneous pain behaviours are thought to be more clinically relevant
than evoked pain responses; however, obtaining scientifically
robust measures of spontaneous pain is laborious and open to
subjective interpretation.

Activity-based assessment. In an attempt to standardize sponta-
neous pain data capture, a number of automated protocols have
recently been developed. The LABORAS system, for example, ana-
lyses distinct vibration signatures generated by freely moving ro-
dents to create a record of behaviours, which includes grooming,
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feeding, climbing and rearing. The system consists of a rodent cage
of specific dimensions with a food hopper and water bottle at
distinct locations in the cage. The animal cage sits on a triangular
platformwith highly sensitive force transducers at the apices of the
platform. Using sophisticated software, it is possible to create a
detailed time-course of animal behaviours which can be later
analyzed offline. Readings are best performed overnight as rodents
are nocturnal and are therefore more active during this time. The
advantage of the LABORAS system is that there is very little direct
intervention by the animal tester, no need for extensive habituation
to any apparatus and the animal behaviours are spontaneous.
The technique has been successfully used in rodent models of
arthritis which generally showed reduced locomotion, rearing and
climbing behaviour29,30,61. Whether these changes in behaviour are
due to pain per se or a consequence of fatigue or general ill-health is
open to interpretation.

Facial expressions. One of the challenging aspects in the clinical
assessment of pain is how to determine pain levels in non-
communicative patients (e.g., babies, dementia patients). In this
realm, facial expressions have been used as a means of interpreting
pain severity by analysing facial features such as cheek raise or eye
tightening. These principles were successfully applied to animal
models of pain including inflammatory joint pain62. Using auto-
mated frame grabbing software, still images were captured from
videos of rat faces and scored for pain features including orbital
tightening, nose/cheek flattening, ear angulation, and whisker
positioning. This rat grimace scale was found to be highly accurate,
reliable and reproducible between blinded scorers. The main lim-
itation of the technique is that it is most effective for measuring
acute pain responses and therefore may not be suitable for OA pain
assessment.

Involvement of neural degeneration in OA

In the treatment of OA pain, it has been known for a long time
that some patients are unresponsive to classical analgesics such
as NSAIDs and opioids. Since these drugs are primarily used to
treat inflammatory pain it only recently dawned on us that these
OA patients could possibly be experiencing neuropathic pain.
Evidence from our own laboratory showed that the peripheral
nervous system is responsible for some of the vascular distur-
bances associated with degenerative joint disease63 and these
vasomotor changes were due to heightened release of neuro-
genic mediators such as calcitonin gene-related peptide. Inter-
estingly, these neuropeptides can also sensitize joint afferents
and cause pain55,64,65. Further investigation revealed that the
sensory nerves innervating injured joints were punctate, con-
torted and full of pain producing neuropeptides66,67. This pattern
of innervation is consistent with a peripheral neuropathy
providing some of the first evidence that the pain found in
degenerating joints could have a neuropathic component. This
was later corroborated by the observation that gabapentin,
which is used to treat neuropathic pain, can reduce afferent
hypersensitivity in arthritic joints68. Neuronal tracer studies have
also shown that OA joint afferents undergo a progressive
degeneration as evidenced by heightened expression of the
nerve injury marker activating transcription factor-3 (ATF-3)69.
These findings highlight that OA pain is a lot more complicated
than originally thought. Mixed inflammatory and neuropathic
components to the disease mean that targeted therapies are
likely to be ineffective in alleviating OA pain. A treatment
strategy which tackles both aspects of the disease depending on
different disease states may have a better chance of managing
the debilitating symptoms of OA.
Considerations when studying pain-related behaviours and
pathways in animal models of OA

Are pain-related behaviours and associated pathways dependent on
the model used to induce arthritis?

A recent review12 discussed the heterogeneity of OA models
with respect to changes in different joint tissues, such as degree of
inflammation, joint instability, progression and extent of cartilage
damage, and osteophytosis e thus highlighting how different
approaches to induce OA-like changes in small animals may be
used to model different aspects of the heterogeneous human
syndrome we call “osteoarthritis”70. When using animal models to
elicit joint pain and explore its cellular and molecular mecha-
nisms, it is still unclear whether there are differences between
different models, and what ultimately the implications may be for
translation to human disease. There is emerging evidence that
different methods of inducing arthritis may be associated with
distinct pain behaviours. Few papers report side-by-side com-
parison of different models within the same lab e but when this is
done, pain behaviours show different patterns. For instance, a
paper comparing pain behaviours following intra-articular
MIA injection vs partial meniscectomy (MNX) in the rat57

revealed that MIA rats displayed persistent robust secondary
mechanical allodynia and hyperalgesia, whereas partial MNX was
associated with milder and slower-onset allodynia, without
hyperalgesia. In addition, MIA rats had more marked reduction in
weight-bearing on the ipsilateral limb throughout the 4-week
study. The overall severity of joint damage was similar in both
models, and thus the authors concluded that “the type of joint
damage rather than the absolute extent is important in generating
a behavioural pain response”57. Using different models that
differentially display specific aspects of structural joint pathology
should enable this hypothesis to be tested. For instance,
collagenase-induced OA is associated with synovial inflamma-
tion71 more so than the destabilization of the medial meniscus
(DMM) model72 and as such there are differential disease-
modifying effects when these two models are compared in
genetically-modified mice73. Interestingly, mechanical allodynia is
a feature of both models, whereas thermal hypersensitivity (to
heat) in the hindpaw can be detected in collagenase-induced
arthritis38 but not in the DMM model (when mechanical and
thermal hypersensitivity were assessed side by side in the same
laboratory28). In general, models of inflammatory arthritis are
strongly associated with thermal hyperalgesia, e.g., carrageenan-
induced arthritis74 and collagen-induced arthritis75. As different
molecular and neuronal pathways are engaged in mediating these
types of hypersensitivity, this clearly offers an opportunity for
comparative analysis of pathways of pain generation associated
with different aspects of OA. At this time, there is no information
on whether spinal and supraspinal pathways of pain processing
differ between different OA models. These results from different
models point to the need for careful and precise interpretation of
data from pre-clinical studies and its translation to different
subtypes or stages of human OA.

Very few reports in the literature assess pain in models other
than MIA and instability-provoked models. Obesity is a major risk
factor for development and progression of knee OA76 as well as for
knee pain77 e yet, obesity is seldom utilized as a model for OA
induction. One report investigated the effects of dietary obesity in
a one-year study in C57Bl/6 mice37. High-fat diet led to symp-
tomatic features of OA, including hyperalgesia and anxiety-like
behaviours, in association with OA-like changes in the knee and
impaired musculoskeletal force generation and motor function
compared with controls. Age is the other major risk factor for OA,
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yet most studies in small animals are performed in younger mice.
In the DMM model, surgery on 12-month-old mice results in
markedly more severe OA than in 12-week old mice78, but
comparative data on pain behaviours are not available. One study
examined the relationship between age, joint nociception, and
joint pathology in naturally occurring OA in Dunkin-Hartley
guinea pigs43. The level of joint pathology correlated well with
increasing age, whereas joint nociception, assessed by electro-
physiological recording from knee joint afferents, was not corre-
lated with OA severity.

Finally, almost all reported studies on OA pain have
studied animal models using the knee joint (Table I) e gait abnor-
mality/lameness associated with induced carpal OA in the horse is
the most common exception. Consensus recommendations for
pharmacological therapy of knee and hip OA (rather than physical
or topical treatments which may be impacted by divergent anat-
omy) did not define or identify any treatments that were effective
in one joint but not the other5. Comparisons of the efficacy of some
treatments for symptomatic OA relief do suggest there may be
joint-specific differences e.g., intra-articular corticosteroids have a
longer lasting effect in hip OA79 compared with knee OA80. There
are however very few direct comparative studies in people where
the effects of a given therapy in different joints are reported e in an
evaluation of the efficacy of rofecoxib no significant difference
associated with joint location (hip vs knee) was found81. Whether
there are differences in the pain pathways in different joints has not
been directly evaluated in animal studies. It is noteworthy that in
Collagen VI null mice, hips show increased age-associated OA
(cartilage erosion) compared with wild type mice82 while knees
show decreased OA (cartilage erosion and subchondral bone
thickening)83. This may suggest there are differences in the un-
derlying molecular mechanisms of OA between joints, and suggest
analogous joint-specific pain mechanisms could also be identified.

Are pain behaviours correlated with structural changes?

The discordance between radiographic severity and pain in
patients has beenwell documented, particularly for knee OA84. The
availability of MRI to study specific features of OA changes has
identified pathological changes, including bone marrow lesions
(BMLs) and synovitis, that showmuch stronger correlationwith the
severity of existing pain as well as incident pain85, providing new
insights into the origins of joint pain. Studies in animal models are
clearly lagging behind in this field, although the ability to assess
specific histological changes in animals should in theory offer a
tremendous opportunity. Animal models have been used to test
disease-modifying efficacy of compounds that target proteins
implicated in OA pathogenesis. An increasing number of these
studies also address concomitant analgesic effects, as listed in
Table II.

Subchondral bone has received much attention as a putative
target for modulating OA-associated pain. A recent randomized
placebo-controlled clinical trial of intravenous zoledronic acid
demonstrated significant BML size reduction as well as pain
reduction at 6 months95. One particular histopathological feature
that has been documented in several animal models as well as the
human OA joint is increased angiogenesis in the synovium, the
menisci, and at the osteochondral junction. The latter is manifested
as channels that extend from the subchondral bone into non-
calcified articular cartilage (reviewed in refs. 96,97). Blood vessel
growth may contribute to inflammation and, because of its role in
endochondral ossification, to structural disease progression e but
neovascularisation may also be linked to pain, because it is
accompanied by growth of sensory nerves that penetrate non-
calcified articular cartilage, osteophytes and the inner regions of
menisci98. Thus, angiogenesis may provide a target for OA pain92. A
broad-spectrum matrix metalloprotease (MMP)-inhibitor also
reduced joint damage, osteochondral angiogenesis and pain
behaviours99.

Most studies exploring structure-modifying effects of potential
disease-modifying osteoarthritic drugs (DMOADs) and concomi-
tant analgesic effects start the treatment protocol at the onset of the
model e thus they are essentially prophylactic studies, and there-
fore do not provide us with real insight into the relationship be-
tween progression of OA and pain mechanisms. To address the
issue of whether disease-modification or halting progression of
existing OAwill alsomodulate pain, more studies are neededwhere
treatment is started in a therapeutic protocol.

Do pain behaviours and associated pathways change over time in
animal models of OA?

Clinical research assessing how pain in OA changes over time as
the disease progresses has been limited, but it is an increasingly
important focus in the field100. Neuropathic elements are recog-
nized in patients with advanced disease, such as a burning sensa-
tion, “pins and needles,” and sensory deficits101. Thus, it is likely
that neuronal and molecular pathways involved in OA pain and its
perception, evolve over time. The use of slowly progressive models
of OA will enable longitudinal study of pain behaviours and asso-
ciated pathways. Despite OA being a chronic progressive disease,
very few studies assess pain behaviours in animal models at
different time points. There is a temporal pattern not only in the
severity of structural damage in OA joints, but also the patho-
physiological pathways that are active at different times that may
impact the efficacy of disease-modifying drugs depending onwhen
they are administered. This was recently observed where zole-
dronic acid inhibited cartilage degradation in the rat MNX model
when administered in the early bone-resorptive phase but not later
in established disease102. To date, few similar temporal studies of
pain severity and molecular regulation associated with changing
structural pathology in the joint have been conducted.

In one study, female C57BL/6 mice developed pain hypersensi-
tivity following partial medial MNX in two phases31. An early phase,
1e2 weeks after surgery, appeared to be associated with post-oper-
ative inflammation andwas responsive to diclofenac. In a later phase,
approximately 7 weeks after surgery, hypersensitivity, including
vocalization in response to knee pressure, was no longer responsive
to diclofenac, but responded tomorphine. Pain levels during the later
phase fluctuated and could be unmasked by the non-selective opioid
receptor antagonist, naloxone, indicating that reduced pain was due
to endogenous opioids. Induction of the endogenous opioid system
was also reported to delay the onset of pain behaviours following
DMMsurgery30. In thismodel, the temporal onset of pain behaviours
appeared to correlate with concomitant changes in the innervating
dorsal root ganglia (DRG)29. After DMM surgery, mice developed
early-onset secondary mechanical allodynia that wasmaintained for
16 weeks. Eight weeks post-surgery, monocyte chemoattractant
protein (MCP)-1 and C-C chemokine receptor 2 (CCR2) mRNA, pro-
tein, and signalling activity were temporarily up-regulated in the
innervating DRG and this correlated with the presentation of
movement-provoked pain behaviours, which weremaintained up to
16 weeks. From 8 weeks onward, macrophages infiltrated the DRG.

These reports suggest that long-term models can be used to
study early and late phases of OA development and associated pain
andwill enable identification of targets that are optimized for these
different phases. This was demonstrated in the mouse DMMmodel
where NGF was induced in the joints during both post-operative
(day 3) and advanced OA (16 weeks) pain, but not in the non-
painful stage of disease (8 weeks post-surgery)103. The soluble



Table II
Effect of putative DMOADs on joint structure and pain assessments

Target/compound Model Effect on joint pathology Changes in nociception/pain
outcomes reported

Ref. Comments

MMP-13 (selective inhibitor) Rat MIA, 2-week follow-up Cartilage protection Prevention of changes in
weight-bearing

86 In the same paper, the same
compound had
chondroprotective effects in
the rat MMT model, but
effects on associated pain
were not analyzed

ADAMTS-4/ADAMTS-5
selective inhibitor

Rat MMT, 13-week follow-up Cartilage protection Prevention of changes in
weight-bearing

87

Adamts5 KO mice Mouse DMM, 8-week follow-
up

No OA-like pathology No development of secondary
mechanical allodynia (unlike
wild type mice, which
develop progressive
allodynia)

28

Cathepsin K (selective
inhibitor)

Guinea pig spontaneous, 1-
month follow-up

Decreased urinary CTXII
(marker of type II collagen
degradation)

Reduced mechanosensitivity
(elctrophysiologically
determined) in response to
noxious and non-noxious
joint movement

88 Cathepsin K inhibition has
recently gathered attention as
a promising target for
structure modification in OA,
and selective inhibitors have
proven efficacious in canine,
mouse, and rabbit models of
OA89,90

Biphosphonates: zoledronate Rat MIA Protective effect against all
MIA-induced joint changes

Ameliorated changes in
weight-bearing

91 The effect of prophylactic and
therapeutic zoledronate at
different time point post MIA
were compared

Biphosphonates: tiludronate Dog ACLT, 8-week follow-up Some beneficial effects on
joint changes (including
subchondral bone and
synovitis)

Positive effect on gait changes
and joint symptoms (a
composite numerical rating
scale (NRS), visual analogue
scale, and electrodermal
activity)

33 Treatment commenced at the
time of surgery

Angiogenesis blocker, PPI-
2458

Rat MMT, 5-week follow-up Reduced joint damage and
synovitis

Reduced changes in weight-
bearing

92 This compound is a fumagillin
analogue that triggers growth
arrest of endothelial cells in
the G1 phase

Intra-articular recombinant
human lubricin with a
truncated mucin-like
domain (LUB-1)

Rat MMT, 5-week follow-up Reduced cartilage
degradation (no changes in
subchondral bone)

Ameliorated reduced weight-
bearing on operated limb

93,94 IA administration of LUB-1
started 1 week after surgery

GM-CSF blocking antibody Mouse CoiA, 6-week follow-
up

Reduced cartilage damage
Reduced synovitis

Ameliorated changes in
weight-bearing

39 Antibodies were efficacious in
a therapeutic and in a
prophylactic protocol

Abbreviations: MMT ¼ medial meniscal transection, ACLT ¼ anterior (or cranial in dog) cruciate ligament transection, CoiA ¼ collagenase-induced arthritis.
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NGF receptor, TrkAd5, was highly effective at suppressing pain in
both phases. Induction of NGF in the post-operative phase of pain
was Tumor Necrosis Factor (TNF)-dependent as anti-TNF reduced
NGF expression in the joint and abrogated pain. However, TNF was
not regulated in the late OA joints where pain was not affected by
anti-TNF therapy. Fucoidan, by suppressing cellular infiltration into
the joint, was able to suppress post-operative, but not late OA pain.

Are findings in animal models translatable to human OA?

All the issues described above affect the potential translation of
findings from pre-clinical studies to clinical trials and ultimately
patient therapy. A recent study highlighted the problems with
“translatability” of analgesic effects in OA. A randomized, placebo-
controlled clinical trial with an irreversible fatty acid amide
hydrolase-1 (FAAH) inhibitor modulated endocannabinoids but
failed to achieve effective analgesia in patients with pain due to OA
of the knee104. In contrast, the same highly selective inhibitor had
shown efficacy in an inflammatory arthritis model and ameliorated
mechanical hyperalgesia of the knee 14 days after MIA injection
(significantly increased joint compression thresholds)105. In addi-
tion, the FAAH inhibitor URB597 has been shown to reduce afferent
nerve hypersensitivity in the Dunkin-Hartley guinea pig model of
naturally occurring OA indicating that endocannabinoids are effec-
tive at reducing joint nociception106. These contrasting findings in
humans and animal models prompted the authors to conclude that
“the disconnect between species needs further study”. However, the
disconnect between outcomes in the pre-clinical vs clinical trials,
may also be because the disease models used do not reflect well the
cellular or molecular mechanisms responsible for the symptoms in
human OA. It is difficult to evaluate translatability of experimental
drugs for OA pain, due to the scarcity of published data.

Standardization of pain assessment techniques and OA models is
needed

The ethical and scientific need to standardize the conduct and
reporting of research using animals both in general and in OA in
particular, has previously been discussed with regard to the intro-
duction and use of the ARRIVE guidelines12,107. It is worth re-
emphasizing, however, that in order to facilitate advances in our
knowledge throughdirect comparisonof outcomesbetweendifferent
research groups and ultimately meta-analyses, consistent conduct
and reporting is mandatory. The ARRIVE and other guidelines are an
excellent tool to facilitate consistency in experimental design and
reporting of studies using animals. Guidelines for histopathology
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scoring (see collected articles in Osteoarthritis Cartilage. 2010 Oct; 18
Suppl 3) may improve comparative evaluation of structural OA pa-
thology. Standardization of imaging and laboratory (e.g., serum bio-
markers) methodology has become routine in human OA research
and clinical trials, and some similar normalization guidelines for use
in animal studies are available (e.g., for micro-computed tomogra-
phy108). To date there has been little attempt to compare and stan-
dardize OAmodels, or the pain outcomemeasures and methodology
between different research groups or laboratories. As noted above, a
number of the pain outcome measures particularly in small animals
are somewhat qualitative andmay therefore be operator-dependent.
Greater investments in standardization of pain outcome measures
would not only reduce intra-experimental variance limiting the
number of experimental animals required and the need to replicate,
thus fulfilling the central “3-Rs” tenant of animal ethics, but would
also facilitate inter-laboratory comparisons and the potential to
conduct systematic reviews and further our understanding and po-
tential treatment of OA pain.

Intrinsic differences in such things as specific pathogen-free
status of an animal house, cage type and size, available or
required anaesthetics and analgesics may all affect the OA struc-
tural disease severity, progression and pain. Marked differences can
be observed in structural disease severity in a single species with
different knee joint instability surgeries109,110, suggesting that
comparison of pain outcomes even between surgical knee insta-
bility models may be problematic. Even comparing supposedly a
single model between laboratories may not be appropriate when
for example what is defined and referenced as surgical DMM in
mice as described by Glasson et al.110 in some papers also includes a
hemi-MNX and/or a medial collateral ligament transection. How
such subtle differences may affect OA pathophysiology, progression
and pain is presently unknown. This same caution is necessary even
when interpreting the effect of sham surgery, where for example
some researchers may only incise the skin while others do a com-
parable arthrotomy and surgical manipulation of the joint just not
including ligament transection.

Even for the model most widely used to study pain, MIA, there
can be marked differences due to methodology. There is a wide
range of doses in use for the MIAmodel, from 1 to 4.8 mgMIA, with
dose-dependent effects on joint damage, pain behaviours, and
nociceptor sensitization reported42,54,56. A recent study comparing
the pathophysiological sequellae of 1 and 2 mgMIA17 reported that
the higher dose was associated with greater hindpaw mechanical
hypersensitivity than the lower dose, in the presence of the same
degree of cartilage proteoglycan loss. Two mg, but not 1 mg, MIA
produced an increase in the expression of the injury marker ATF-3
in DRG cells, a reduction in intra-epidermal nerve fibre density in
plantar hindpaw skin, and ipsilateral spinal cord microgliosis, all
markers of neural injury. This demonstrates that intra-articular
2 mg MIA inflicts significant axonal injury to DRG cells, including
those that innervate tissues outside of the knee joint. The authors
concluded that this neuropathic component, if it can be attributed
to neurotoxicity, would call into question the utility of MIA at doses
greater than 1 mg for the translational study of OA pain17.

Conclusions

Animal models offer great potential to unravel the complex
pathophysiology of OA pain, its molecular and temporal regulation,
and a critical pathway for developing and testing symptom-
modifying therapeutic interventions. However, a number of issues
remain to be resolved to optimize pre-clinical OA pain research and
to optimize the outcome translation of clinical trials and patient
therapies. In particular, the research in this field should strive for
better standardization of OA animal models and pain outcome
measures, to study the longitudinal pattern and temporal changes in
pain/pain mechanisms, and to better understand how pain out-
comes in our models relate to specific molecular biochemical and
structural changes in the joint. Retrospective testing of any clinically
beneficial symptom-modifying therapies in multiple animal models
and using multiple pain assessment modalities will help to validate
translational strategies into subsets of OA patients.
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